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Application of Advanced Data 
Analytics to Improve Haul Trucks 
Energy Efficiency in Surface Mines

Ali Soofastaei, Peter Knights, and Mehmet Kizil

12.1  Introduction

Truck haulage is responsible for a majority of cost in a surface mining 
operation. Diesel fuel, which is costly and has a significant environmental 
footprint, is used as a source of energy for haul trucks in surface mines. 
Accordingly, improving truck energy efficiency would lead to a reduction in 
fuel consumption and therefore greenhouse gas emissions.

The determination of haul trucks fuel consumption is complex and 
requires multiple parameters including the mine, fleet, truck, speed, pay-
load, operator inputs, fuel, climate, tire, and road conditions as inputs. Data 
analytics can be used to simulate the complex relationships between the 
input parameters affecting haul trucks fuel consumption. The aim of this 
chapter is to introduce an advanced data analytics model to improve the 
energy efficiency of haul trucks in surface mines.

The most important controllable parameters affecting fuel consump-
tion are payload, truck speed, and total rolling resistance. From these 
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parameters a comprehensive analytical framework can be developed to 
determine the opportunities for minimizing truck fuel consumption. 
The first stage of the analytical framework includes the development of 
the artificial neural network (ANN) model to determine the relationship 
between truck fuel consumption and payload, truck speed, and total 
resistance.

This model can be trained and tested using real data collected from some 
large surface mines in Australia, the United States, and Canada. A fitness 
function for the haul truck fuel consumption can be successfully generated. 
This fitness function is then used in the second stage of the analytical frame-
work to develop a digital learning algorithm based on a novel multiobjective 
genetic algorithm (GA). The aim of this algorithm is to establish the optimum 
set points of the three controllable parameters to reduce the diesel fuel con-
sumption, with these set points being specific to individual mines and fleet 
operations.

12.2 � Context: Reducing Energy Consumption 
via Data Analytics

Energy efficiency has gradually become a more important consideration 
worldwide since the rise of the cost of fuel in the 1970s. The mining indus-
try annually consumes trillions of British thermal units (BTUs) of energy 
in operations such as exploration, extraction, transportation, and process-
ing. Mining operations use energy in a variety of ways, including excava-
tion, materials handling, mineral processing, ventilation, and dewatering. 
It also uses significant quantities of power. The Mining industry consumed 
520  petajoules (PJ) of energy in 2014–2015 or 9% of the national energy 
end use in Australia (Allison et  al. 2016). Energy consumption in min-
ing is rising at around 6% annually in Australia due to lower grade ores 
located deeper underground (EEO 2012), a trend seen in other developed 
countries (DOE 2012). As well as improving margins through efficiency 
savings, energy streamlining in the sector can also result in the reduction 
of millions of tons of gas emissions because the primary energy sources 
used in the mining industry are petroleum products: electricity, coal, and 
natural gas.

The potential for energy (and financial) savings has motivated the min-
ing industry and governments to conduct research into the reduction of 
energy consumption. Consequently, a large number of research studies and 
industrial projects have been carried out in an attempt to do this in min-
ing operations across the world (Soofastaei 2016). Current investments in the 
improvement of mining technologies and energy management systems have 
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resulted in a significant reduction of energy consumption. Based on com-
pleted industrial projects, significant further opportunities exist within the 
mining industry to reduce energy consumption. The case study presented 
here—haulage equipment—is one of these potential areas.

Service trucks, front-end loaders, bulldozers, hydraulic excavators, rear 
dump trucks, and ancillary equipment, such as pick-up trucks and mobile 
maintenance equipment, are prominent examples of the diesel equipment 
and associated energy footprint of mining operations. In surface mines, 
the most commonly used means of mining and hauling of materials is by 
a truck and shovel operation. The trucking of overburden constitutes a 
major portion of energy consumption. However, as will be discussed, the 
rate of this energy consumption is the result of many different parameters 
(EEO 2010) which can be analyzed and altered to obtain optimal levels of 
performance.

Data analytics represents a very appropriate approach to pulling together 
these disparate data sources since it is the science of examining raw data 
to draw conclusions about that information. The main advantages of data 
analytics can be presented by cost reduction, faster and better decision-
making, and finally new products and services (Soofastaei and Davis 
2016). The uses of data analytics are many and can apply to areas that 
many might not have thought of before. One area that sees much potential 
in data analytics is the mining industry. For an industry that does trillions 
of dollars in business every year, data analytics should be considered a 
necessity not a luxury. Indeed, there are many phases of the mining pro-
cess where data analytics can be put to use. The four main phases are the 
(1) extraction of ore, (2) materials handling, (3) ore comminution and sepa-
ration, and (4) mineral processing. Of particular focus for some compa-
nies is efficiency improvements in the second phase, materials handling. 
Without data analytics at the heart of this phase, operators are more than 
likely to be subject to suboptimal functioning of their equipment, includ-
ing in haulage vehicles and infrastructure.

As Figure 12.1 illustrates, use of data analytics in organizations cover 
two dimensions: time frame (the past, present, or future) and competitive 
advantage (value of insight generated). At the lowest level, analytics are rou-
tinely used to produce reports and alerts. These are simple, retrospective 
processing and reporting tools, such as pie graphs, top-ten histograms and 
trending plots, typically addressing variations of the basic question of “what 
happened and why?” Increasingly, sophisticated analytical tools, capable 
of working at or near real-time and providing rapid insights for process 
improvement, can show the user “what just happened” and assist them in 
understanding “why” as well as the next best action to take. However, at the 
top of the pictured comparative advantage scale, there are predictive models 
and optimization tools, aimed at evaluating “what will happen” and identi-
fying the best available responses.
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12.3  Modeling Haul Trucks’ Fuel Consumption

In this chapter, the effects of the three most important and effective param-
eters on fuel consumption of haul trucks are examined. These param-
eters are payload (P), truck speed (S), and total rolling resistance (TR). On 
a real mine site, the correlation between fuel consumption and the three 
parameters is complex. We use two artificial intelligence methods to create 
an advanced data analytic model to estimate and reduce haul truck fuel 
consumption in surface mines. The model can estimate the energy con-
sumption of haul trucks in surface mines using an artificial neural net-
work (ANN) and can also find the optimum values of P, S, and TR using a 
GA. We analyze each of these in turn and then present the results of our 
modeling.
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FIGURE 12.1
Competitive advantages of data analytics in organizations. (From Davenport, T. H. et  al., 
Analytics at Work: Smarter Decisions, Better Results, Harvard Business Press, New York, 2010.)
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12.3.1  Artificial Neural Network

ANNs, also known as neural networks (NNs), simulated neural networks 
(SNNs), or parallel distributed processing (PDP), are the representation of 
methods that the brain uses for learning (Hammond 2012). ANNs are a 
series of mathematical models that imitate a few of the known characteris-
tics of natural nerve systems and sketch on the analogies of adaptive natural 
learning (Rodriguez et al. 2013). The key component of a ANN paradigm is 
the unusual structure of the data processing system. ANNs are utilized in 
various computer applications to solve complex problems. They are fault-
tolerant and straightforward models that do not require information to iden-
tify the related factors and do not need the mathematical description of the 
phenomena involved in the process (Beigmoradi et al. 2014).

The main part of a NN structure is a “node.” Biological nodes sum the sig-
nals received from numerous sources in different ways and then carry out 
a nonlinear action on the results to create the outputs. NNs typically have 
an input layer, one or more hidden layers, and an output layer (Figure 12.2).

Each input is multiplied by its connected weight, and in the simplest state, 
these quantities and biases are combined. They then pass through the activa-
tion functions to create the output (Equations 12.1 through 12.3). 
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FIGURE 12.2
Artificial neural network structure. (From Soofastaei, A., Development of an Advanced Data 
Analytics Model to Improve the Energy Efficiency of Haul Trucks in Surface Mines, PhD thesis, 
The University of Queensland, School of Mechanical and Mining Engineering, Brisbane, 
Australia, 2016.)
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where:
x is the normalized input variable
w is the weight of that variable
i is the input
b is the bias
q is the number of input variables
k and m are the counter and number of NN nodes, respectively, in the 

hidden layer

In general, the activation functions consist of linear and nonlinear equa-
tions. The coefficients associated with the hidden layer are grouped into 
matrices wi,j,k and bi,k. Equation 12.2 can be used as the activation function 
between the hidden and the output layers (in this equation, f is the transfer 
function). 

	 F f Ek k= ( )	 (12.2)

The output layer computes the weighted sum of the signals provided by 
the hidden layer, and the associated coefficients are grouped into matrices 
Wo,k and bo. Using the matrix notation, the network output can be given by 
Equation 12.3. 
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Network training is the most important part of NN modeling and is car-
ried out using two methods: controllable and uncontrollable training. The 
most common training algorithm is that of back-propagation. A training 
algorithm is defined as a procedure that consists of adjusting the coefficients 
(weights and biases) of a network to minimize the error function between 
the estimated network outputs and the real outputs.

12.3.2 � Optimization of Effective Parameters on Haul Truck 
Fuel Consumption

Optimization is a part of computational science that represents a very effec-
tive way to find the best measurable solution for problems. To solve a given 
problem, it is important to consider two components: (1) search area and 
(2)  objective function. In the search area, all the possibilities of the solu-
tion are considered. The objective function is a mathematical function that 
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associates each point in the search area to a real value, applicable to evaluate 
all the members of the search area.

Traditional optimization methods are characterized by the stiffness of 
their mathematical models, making their application limited in represent-
ing “real-life” dynamic and complex situations (Selvakumar et  al. 2013). 
Introducing optimization techniques based on artificial intelligence, under-
pinned by heuristic rulings, have reduced the problem of stiffness. Heuristic 
rules can be defined as reasonable rules derived from experience and obser-
vations of behavior tendencies within a system of analysis.

Using analogies with nature, some heuristic algorithms were proposed 
during the 1950s by trying to simulate biological phenomena in engineering. 
Accordingly, these algorithms were termed natural optimization methods. One 
of the best advantages of using the mentioned algorithms is their random char-
acteristic. Due to their innate flexibility, they have been found to be appropriate 
to solve all types of problems in engineering (Singh and Rossi 2013; Soleimani 
et  al. 2013; Soofastaei et  al. 2016). Rapid advances in computing during the 
1980s made the use of these complex algorithms for optimization of functions 
and processes more practicable when traditional methods were not success-
ful in this area. During the 1990s some new heuristic methods were created 
by the previously completed algorithms, such as swarm algorithms, simulated 
annealing, ant colony optimization, and the method used in this study, GAs.

GAs were proposed by Holland (1975) as an abstraction of biological evolu-
tion, drawing on ideas from natural evolution and genetics for the design and 
implementation of robust adaptive systems (Sivanandam and Deepa 2008). Use 
of the new generation of GAs is comparatively novel in optimization methods. 
They do not use any derivative information and, therefore, have good chances of 
escape from local minimums. As a result, their application in practical engineer-
ing problems can bring more optimal, or at least more satisfactory, solutions than 
those obtained by other traditional mathematical methods (Whitley et al. 1990).

GAs are analogous with the evolutionary aspects of natural genetics. From 
randomly selected “individuals” in any search area, the fitness of the solu-
tions, which is the result of the variable that is to be optimized, is determined 
subsequently from the “fitness function.” The individual that generates the 
best fitness within the population has the highest chance to return in the 
next generation with the opportunity to reproduce by crossover with another 
individual, thus producing decedents with both characteristics. If a GA is 
developed correctly, the population (a group of possible solutions) will con-
verge to an optimal solution for the proposed problem (Xing and Qu 2013). 
The processes that have more contribution to the evolution are the crossover, 
based on the selection and reproduction and the mutation.

GAs have been applied to a diverse range of scientific, engineering, and eco-
nomic problems due to their potential as optimization techniques for complex 
functions (Singh and Rossi 2013; Stanković et al. 2013; Tian et al. 2013). There 
are four significant advantages when using GAs to optimize problems (Yousefi 
et al. 2013). First GAs do not have many mathematical requirements regarding 
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optimization problems. Second, they can handle many types of objective func-
tions and constraints (i.e., linear or nonlinear) defined in discrete, continuous, 
or mixed search spaces. Third, the periodicity of evolution operators makes 
them very efficient at performing global searches (in probability). And finally, 
they provide us with great flexibility to hybridize with domain-dependent heu-
ristics to allow an efficient implementation for a problem.

It is also important to analyze the influence of certain parameters on the 
behavior and the performance of the GA, to establish their relationship with 
the problem necessities and the available resources. The influence of each 
parameter on algorithm performance depends on the context of the chal-
lenge being treated. Thus, determining an optimized group of values to 
these parameters will depend on a good deal of experimentation and testing. 
There are a few main parameters in the GA method. Details of these five core 
parameters are illustrated in Figure 12.3 and tabulated in Table 12.1.

The primary genetic parameters are the size of the population that affects 
the global performance and the efficiency of the GA, the mutation rate that 
avoids that a given position remains stationary in value, or that the search 
becomes essentially random.

12.3.3  The Developed Model

An innovative combined model was introduced to improve the three key effec-
tive parameters on the energy consumption of haul trucks. Taking the facets of 
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FIGURE 12.3
A simple structure of the genetic algorithm. (From Soofastaei, A., Development of an Advanced Data 
Analytics Model to Improve the Energy Efficiency of Haul Trucks in Surface Mines, PhD thesis, The 
University of Queensland, School of Mechanical and Mining Engineering, Brisbane, Australia, 2016.)
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the GA approach, in this model P, S, and TR are the individuals and the main 
function for optimization of the fitness function is fuel consumption. The fit-
ness function was created by an ANN model. This function is a correlation 
between the fuel consumption of the haul truck, P, S, and TR. After the first 
step, the completed function goes to the GA phase of the computer code as 
an input. The developed code starts all GA processes under stopping criteria 
defined by the model (MSE and R2). Finally, the improved P, S, and TR will be 
presented by the model. These optimized parameters can be used to minimize 
the fuel consumption of haul trucks (Figures 12.4 and 12.5).

TABLE 12.1

Genetic Algorithm Parameters

GA Parameter Details

Fitness function The primary function for optimization.
Individuals An individual is any parameter to apply the fitness function. The value of 

the fitness function for an individual is its score.
Populations and 
generations

A population is an array of individuals. At each iteration, the GA 
performs a series of computations on the current population to produce 
a new population. Each successive population is called a new generation.

Fitness value The fitness value of an individual is the value of the fitness function 
calculated for that individual.

Parents and 
children

To create the next generation, the GA selects certain individuals in the 
current population, called parents, and uses them to create individuals in 
the next generation, called children.

Data collection

Data cleaning

Data analytics
Prediction

Data analytics
advanced methods

Data analytics
classical methodsMine site

Optimization Genetic algorithm (GA)

Artificial neural network (ANN)

FIGURE 12.4
A schematic of the developed idea to create a combined artificial intelligence model. (From 
Soofastaei, A., Development of an Advanced Data Analytics Model to Improve the Energy Efficiency of 
Haul Trucks in Surface Mines, PhD thesis, The University of Queensland, School of Mechanical 
and Mining Engineering, Brisbane, Australia, 2016.)
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12.4  Results

The indicated artificial intelligence model that was developed was then 
tested against real data taken from some types of popular trucks in four big 
surface mines in the United States, Canada, and Australia. Some informa-
tion about these mines and trucks is presented in Table 12.2 (Figures 12.6 
through 12.9).

To test the developed networks and validate the developed model, 
1,000,000 independent samples collected from four mines were used. As our 
figures illustrate, the results show good agreement between the actual and 
estimated values of fuel consumption. Figure 12.10 presents sample values 
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FIGURE 12.5
Details of developed model. (From Soofastaei, A., Development of an Advanced Data Analytics 
Model to Improve the Energy Efficiency of Haul Trucks in Surface Mines, PhD thesis, The University 
of Queensland, School of Mechanical and Mining Engineering, Brisbane, Australia, 2016.)
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for the estimated (using the ANN) and the independent (tested) fuel con-
sumption to highlight the insignificance of the values of the absolute errors 
in the analysis for the four mines that were studied.

All processes in the developed model, then, certainly work based on the 
present dataset collected from four large surface mines. The results of using 
developed model for the selected real-life mines are given in Tables 12.3 
through 12.6. They, therefore, could presumably be replicated using the same 
method for other surface mines.

TABLE 12.2

Case Studies

Case Study Location Mine Type Mine Details
Investigated 

Truck

Mine 1 Queensland, 
Australia

Surface coal 
mine

The mine has coal 
reserves amounting to 
877 million tons of 
coking coal, one of the 
largest coal reserves in 
Asia and the world. It 
has an annual 
production capacity of 
13 million tons of coal.

CAT 793D

Mine 2 Arizona, 
United States

Surface 
copper 
mine

The mine represents one 
of the largest copper 
reserves in the United 
States and the world, 
having estimated 
reserves of 3.2 billion 
tons of ore grading 
0.16% copper.

CAT 777D

Mine 3 Arizona, 
United States

Surface 
copper 
mine

The deposit had 
estimated reserves (in 
2017) of 907 million 
tons of ore grading 
0.26% copper and 0.03% 
molybdenum.

CAT 775G

Mine 4 Ontario, 
Canada

Surface gold 
mine

This mine produced 
235,000 ounces of gold in 
2016, at the cost of sales 
of $795 per ounce, and 
all-in sustaining costs of 
$839 per ounce. The 
mine’s proven mineral 
reserves as of December 
2016, were 1.6 million 
ounces of gold.

CAT 785D
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FIGURE 12.6
Correlation between Gross Vehicle Weight, S, TR, and FCIndex based on the developed ANN 
model for CAT 793D. All data were collected from a surface coal mine located in Central 
Queensland, Australia (Mine 1).
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Correlation between GVW, S, TR, and FCIndex based on the developed ANN model for CAT 
777D. All data were collected from a surface copper mine located in Arizona, United States 
(Mine 2).
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FIGURE 12.8
Correlation between GVW, S, TR, and FCIndex based on the developed ANN model for CAT 
775G. All data were collected from a surface copper mine located in Arizona, United States 
(Mine 3).
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TABLE 12.4

The Range of Normal Values and Optimized Range of Variables by GA Model to 
Minimize Fuel Consumption by Haul Trucks (Caterpillar 777D in Mine 2)

Variables

Normal Values Optimized Values

Minimum Maximum Minimum Maximum

Gross vehicle weight (ton) 80 180 140 160
Total resistance (%) 10 15 10 11
Truck speed (km/hr) 10 20 10 12

TABLE 12.3

The Range of Normal Values and Optimized Range of Variables by GA Model to 
Minimize Fuel Consumption by Haul Trucks (Caterpillar 793D in Mine 1)

Variables

Normal Values Optimized Values

Minimum Maximum Minimum Maximum

Gross vehicle weight (ton) 340 430 380 400
Total resistance (%) 8 12 8 9
Truck speed (km/hr) 10 20 10 15

CAT 785D, Surface gold mine, Ontario, Canada (Mine 4)
CAT 775G, Surface copper mine, Arizona, United States (Mine 3)

CAT 777D, Surface copper mine, Arizona, United States (Mine 2)
CAT 793D, Surface coal mine, Central Queensland, Australia (Mine 1)
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FIGURE 12.10
Sample values for the estimated (using the ANN) and the independent (tested) fuel 
consumption index.
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12.5  Conclusions

The aim of this chapter was to formulate an advanced data analytics model 
capable of improving haul truck fuel consumption based on the relationship 
between P, S, and TR. From the available “real-life” datasets obtained from 
surface mining operations, this relationship is extremely complex to disect 
using traditional analysis. Therefore, an artificial intelligence method was 
adopted to create a reliable model to analyze the problem.

The first element of this method was to utilize an ANN model to establish 
a correlation between P, S, and TR with fuel consumption. The results of 
this correlation showed that fuel consumption has a nonlinear relationship 
with the investigated parameters. The ANN was then trained and tested 
using the collected real mine site dataset, with there being good agreement 
between the actual and estimated values of fuel consumption. Building upon 
this material, a GA model was developed for considering the optimization of 
effective parameters on fuel consumption in haulage trucks, which in turn 
could maximize the energy efficiency in haulage operations.

From these amalgamated models, the range of all studied effective 
parameters on fuel consumption of haul trucks were optimized, and the 

TABLE 12.5

The Range of Normal Values and Optimized Range of Variables by GA Model to 
Minimize Fuel Consumption by Haul Trucks (Caterpillar 775G in Mine 3)

Variables

Normal Values Optimized Values

Minimum Maximum Minimum Maximum

Gross vehicle weight (ton) 50 120 70 90
Total resistance (%) 13 26 13 14
Truck speed (km/hr) 10 15 10 13

TABLE 12.6

The Range of Normal Values and Optimized Range of Variables by GA Model to 
Minimize Fuel Consumption by Haul Trucks (Caterpillar 785D in Mine 4)

Variables

Normal Values Optimized Values

Minimum Maximum Minimum Maximum

Gross vehicle weight (ton) 150 275 200 225
Total resistance (%) 8 13 8 9
Truck speed (km/hr) 10 15 10 12
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best values of P, S, and TR to minimize fuel consumption index (FCIndex) 
were highlighted. The developed model was applied to analyze data for 
four big coal, copper, and gold surface mines in the United States, Canada, 
and Australia.
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